Our Products
Renewable Fuels is the hottest topic in most board rooms and homes today; DGL Global Ventures LLC has partnered with producers of TyLar Gas™,Ethanol and Bio-Diesel for Automotive and Industrial use and Green Heat for Home and catering uses.

Ethanol fuel is an alternative to gasoline. It can be combined with gasoline in any concentration up to pure ethanol (E100). Anhydrous ethanol, that is, ethanol with at most 1% water, can be blended with gasoline in varying quantities to reduce consumption of petroleum fuels and in attempts to reduce air pollution. Worldwide automotive, ethanol capabilities vary widely and most spark-ignited gasoline style engines will operate well with mixtures of 10% ethanol (E10).

In Brazil, ethanol-powered and flexible-fuel vehicles are manufactured to be capable of operation by burning hydrated ethanol, an azeotrope of ethanol (around 93% v/v) and water (7%). Hydrated ethanol may also be mixed with gasoline in flexible fuel vehicles but a minimum amount of ethanol (granted by legally regulated gasoline type C) is required to avoid problems with the mixture. A few flexible-fuel systems, like Hi-Flex, used by Renault Clio and Fiat Siena, can also run with pure gasoline.

Ethanol is increasingly used as an oxygenate additive for standard gasoline, as a replacement for methyl t-butyl ether (MTBE), the latter chemical being difficult to retrieve from groundwater and soil contamination. At a 10% mixture, ethanol reduces the likelihood of engine knock, by raising the octane rating. The use of 10% ethanol gasoline is mandated in some cities where the possibility of harmful levels of auto emissions are possible, especially during the winter months. Ethanol can be used to power fuel cells, and also as a feed chemical in the transesterification process for biodiesel.

Ethanol can be mass-produced by fermentation of sugar or by hydration of ethylene from petroleum and other sources. Current interest in ethanol lies in production derived from crops (bio-ethanol), and there's discussion about whether it is a sustainable energy resource that may offer environmental and long-term economic advantages over fossil fuels, like gasoline or diesel. It is readily obtained from the starch or sugar in a wide variety of crops. Ethanol fuel production depends on availability of land area, soil, water, and sunlight.

In 2004, around 42 billion liters of ethanol were produced in the world, most of it being for use in cars. Brazil produced around 16.4 billion liters and used 2.7 million hectares of land area for this production, or 4.5% of Brazilian land area used for crop production in 2005. Around 12,4 billion liters were produced as fuel to ethanol-powered vehicles in domestic market.

Back to TOP


Cornfield in South Africa

Sugar cane harvest.

By using renewable energy sources, like ethanol from sugarcane & hydroelectricity, Brazil has reduced its dependence on foreign oil.


Bioethanol is obtained from the conversion of carbon based feedstock. Agricultural feedstocks are considered renewable because they get energy from the sun using photosynthesis. Ethanol can be produced from a variety of feedstocks such as sugar cane, bagasse, miscanthus, sugar beet, sorghum, grain sorghum, switchgrass, barley, hemp, kenaf, potatoes, sweet potatoes, cassava, sunflower, fruit, molasses, whey or skim milk, corn, stover, grain, wheat, wood, paper, straw, cotton, other biomass, as well as many types of cellulose waste. As of 2006, production is primarily from sugarcane, maize (corn) and sugar beets - and also as of 2006, technology does not yet exist that makes it economically competitive to produce ethanol from cellulosic feedstock.[5]

Four countries have developed bioethanol fuel programs: Brazil, Colombia, China and the United States.

One result of increased use of ethanol is increased demand for the feedstocks. Large-scale production of agricultural alcohol may require substantial amounts of cultivable land with fertile soils and water. This may lead to environmental damage such as deforestation or decline of soil fertility due to reduction of organic matter.

About 5% (in 2003) of the ethanol produced in the world is actually a petroleum product. It is made by the catalytic hydration of ethylene with sulfuric acid as the catalyst. It can also be obtained via ethylene or acetylene, from calcium carbide, coal, oil gas, and other sources. Two million tons of petroleum-derived ethanol are produced annually. The principal suppliers are plants in the United States, Europe, and South Africa. Petroleum derived ethanol (synthetic ethanol) is chemically identical to bio-ethanol and can be differentiated only by radiocarbon dating.

Back to TOP


Ethanol can be produced in different ways, using a variety of feedstocks. Brazil uses sugarcane as primary feedstock. For information on Brazil's method of ethanol production, see ethanol fuel in Brazil. More than 90% of the ethanol produced in the U.S. comes from corn (see Renewable Fuels Association's list of United States ethanol plants).

Crops with higher yields of energy, such as switchgrass and sugar cane, are more effective in producing ethanol than corn. The production of Ethanol from corn has been driving up the price of corn creating cost problems for tortilla makers in Mexico. The Mexican Government is attempting to reduce the fears of both producers and consumers over how to best control the rising price of the centuries-old dietary staple. Some lawmakers argue that price controls which have worked in the past, are the best method, while others would like to see increased production of the alternative resource. Ethanol can also be produced from sweet sorghum, a dryland crop that uses much less water than sugarcane, does not require a tropical climate and produces food and fodder in addition to fuel. Sweet sorghum cultivar improvement and cultivation is emphasized in India.

Basic steps for dry mill production of ethanol from corn are: refining into starch, liquification and saccharification (hydrolysis of starch into glucose), yeast fermentation, distillation, dehydration (required for blending with gasoline), and denaturing (optional).

Ethanol is produced by yeast fermentation of the sugar extracted from sugarcane or sugar beets. Subsequent processing is the same as for ethanol from corn. Production of ethanol from sugarcane (sugarcane requires a tropical climate to grow productively) returns about 8 units of energy for each unit expended compared to corn which only returns about 1.34 units of fuel energy for each unit of energy expended. Thus sugarcane nets 7/.34 or about 20 times as much energy as corn. (corn produces an additional 0.33 units of energy in the form of high-protein livestock feed).

Carbon dioxide, a potentially harmful greenhouse gas, is emitted during fermentation. However, the net effect is offset by the uptake of carbon gases by the plants grown to produce ethanol. When compared to gasoline, ethanol releases less greenhouse gases.

For the ethanol to be usable as a fuel, water must be removed. Most of the water is removed by distillation, but the purity is limited to 95-96% due to the formation of a low-boiling water-ethanol azeotrope. The 96% m/m (93% v/v) ethanol, 4% m/m (7% v/v) water mixture may be used as a fuel, and it's called hydrated ethyl alcohol fuel (álcool etílico hidratado combustível, or AEHC in Portuguese). In 2006/2007, an estimated 17 billion liters (4,5 billion gallons) of hydrated ethyl alcohol fuel will be produced, to be used in ethanol powered vehicles.

For blending with gasoline, purity of 99.5 to 99.9% is required, depending on temperature, to avoid separation. Currently, the most widely used purification method is a physical absorption process using molecular sieves. Another method, azeotropic distillation, is achieved by adding the hydrocarbon benzene which also denatures the ethanol (so no extra methanol/petrol/etc. is needed to render it undrinkable for duty purposes). However, benzene is a powerful carcinogen and so will probably be illegal for this purpose soon.

Biotechnology may improve the energy gain of bioethanol.

Ethanol is not typically transported by pipeline for three reasons. Current production levels will not support a dedicated pipeline. The costs of building and maintaining a pipeline from Midwestern United States to either coast are prohibitive. Any water which penetrates the pipeline will be absorbed by the ethanol, diluting the mixture.

Back to TOP

Fuel Economy

For vehicles with current (2006) design flexible fuel engines, fuel economy (measured as miles per gallon (MPG), or liters per 100 km) is directly proportional to energy content. Ethanol contains approx. 34% less energy per gallon than gasoline, and therefore will result in a 34% reduction in miles per gallon. For E10 (10% ethanol and 90% gasoline), the effect is small (~3%) when compared to conventional gasoline, and even smaller (1-2%) when compared to oxygenated and reformulated blends. However, for E85 (85% ethanol), the effect becomes significant. E85 will produce approximately 27% lower mileage than gasoline, and will require more frequent refueling. Actual performance may vary depending on the vehicle.

This reduced fuel economy should be considered when making price comparisons. For example, if regular gasoline costs $3.00 per gallon, and E85 costs $2.19 per gallon, the prices are essentially equivalent. If the discount for E85 is less than 27%, it actually costs more per mile to use. For USA price comparisons, see.

Some researchers are working to increase fuel efficiency by optimizing engines for ethanol-based fuels. Ethanol's higher octane allows an increase of an engine's compression ratio for increased thermal efficiency. In one study, complex engine controls and increased exhaust gas recirculation allowed a compression ratio of 19.5 with fuels ranging from neat ethanol to E50. Thermal efficiency up to approximately that for a diesel was achieved. This would result in the MPG of a dedicated ethanol vehicle to be about the same as one burning gasoline. There are currently no commercially-available vehicles that make significant use of ethanol-optimizing technologies, but this may change in the future.

Back to TOP

We welcome VOLUME ORDERS for ALL of the above PRODUCTS.

      NEXT Alternative FUEL: BIODIESEL Biodiesel

Go ToBACK        NEXT Go ToNutritional Products